Oncostatin M Confers Neuroprotection against Ischemic Stroke.
نویسندگان
چکیده
UNLABELLED Cell-surface receptors provide potential targets for the translation of bench-side findings into therapeutic strategies; however, this approach for the treatment of stroke is disappointing, at least partially due to an incomplete understanding of the targeted factors. Previous studies of oncostatin M (OSM), a member of the gp130 cytokine family, have been limited, as mouse models alone may not strongly resemble the human condition enough. In addition, the precise function of OSM in the CNS remains unclear. Here, we report that human OSM is neuroprotective in vivo and in vitro by recruiting OSMRβ in the setting of ischemic stroke. Using gain- and loss-of-function approaches, we demonstrated that decreased neuronal OSMRβ expression results in deteriorated stroke outcomes but that OSMRβ overexpression in neurons is cerebroprotective. Moreover, administering recombinant human OSM to mice before the onset of I/R showed that human OSM can be protective in rodent models of ischemic stroke. Mechanistically, OSM/OSMRβ activate the JAK2/STAT3 prosurvival signaling pathway. Collectively, these data support that human OSM may represent a promising drug candidate for stroke treatment. SIGNIFICANCE STATEMENT OSM, a member of the gp130 cytokine family, regulates neuronal function and survival. OSM engages a second receptor, either LIFRα or OSMRβ, before recruiting gp130. However, it is not clear whether OSM/OSMRβ signaling is involved in neuroprotection in the setting of ischemic stroke. Recent studies show that, compared with mouse disease models, the OSM receptor system in rats more closely resembles that in humans. In the present study, we use genetic manipulations of OSMRβ in both mouse and rat stroke models to demonstrate that OSMRβ in neurons is critical for neuronal survival during cerebral ischemic/reperfusion. Interestingly, administration of human OSM also leads to improved stroke outcomes. Therefore, OSM may represent a promising drug candidate for stroke treatment.
منابع مشابه
Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice.
BACKGROUND AND PURPOSE Tolerance to ischemic brain injury is induced by several preconditioning stimuli, including lipopolysaccharide (LPS). A small dose of LPS given systemically confers ischemic protection in the brain, a process that appears to involve activation of an inflammatory response before ischemia. We postulated that LPS preconditioning modulates the cellular inflammatory response a...
متن کاملNovel thyroxine derivatives, thyronamine and 3-iodothyronamine, induce transient hypothermia and marked neuroprotection against stroke injury.
BACKGROUND AND PURPOSE Mild hypothermia confers profound neuroprotection in ischemia. We recently discovered 2 natural derivatives of thyroxine, 3-iodothyronamine (T(1)AM) and thyronamine (T(0)AM), that when administered to rodents lower body temperature for several hours without induction of a compensatory homeostatic response. We tested whether T(1)AM- and T(0)AM-induced hypothermia protects ...
متن کاملSevoflurane preconditioning confers neuroprotection via anti-inflammatory effects.
Neuroprotection afforded by volatile anesthetic preconditioning (APC) has been demonstrated in both in vivo and in vitro experiments, yet the underlying mechanism is poorly understood. We therefore investigated whether suppression of p38 MAPK, NF-kappa B and the downstream pro-inflammatory signaling cascade contribute to sevofurane APC-induced neuroprotection. Male Sprague-Dawley rats were expo...
متن کاملNeuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxy- phenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury
Objective(s): Stroke may cause severe neuronal damage. The sesamin have been demonstrated to possess neuroprotection by its antioxidant and anti-inflammatory properties. One sesamin derivative was artificially composited, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) had been developed to study its antioxidative activity and neuroprotection. Materials and Methods: The...
متن کاملMutant erythropoietin without erythropoietic activity is neuroprotective against ischemic brain injury.
BACKGROUND AND PURPOSE Erythropoietin (EPO) confers potent neuroprotection against ischemic injury. However, treatment for stroke requires high doses and multiple administrations of EPO, which may cause deleterious side effects due to its erythropoietic activity. This study identifies a novel nonerythropoietic mutant EPO and investigates its potential neuroprotective effects and underlying mech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 34 شماره
صفحات -
تاریخ انتشار 2015